Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Pest Manag Sci ; 80(3): 1593-1606, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37986233

ABSTRACT

BACKGROUND: Insight into the mode of action of plant-derived acaricides will help in the development of sustainable control strategies for mite pests. Scopoletin, a promising plant-derived bioactive compound, displays prominent acaricidal activity against Tetranychus cinnabarinus. The transcription factor SoxNeuroA plays a vital role in maintaining calcium ion (Ca2+ ) homeostasis. Down-regulation of SoxNeuroA gene expression occurs in scopoletin-exposed mites, but the functional role of this gene remains unknown. RESULTS: A SoxNeuroA gene from T. cinnabarinus (TcSoxNeuroA) was first cloned and identified. Reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time polymerase chain reaction (qPCR), and Western blotting assays all confirmed that the gene expression and protein levels of TcSoxNeuroA were significantly reduced under scopoletin exposure. Furthermore, RNA interference silencing of the weakly expressed SoxNeuroA gene significantly enhanced the susceptibility of mites to scopoletin, suggesting that the acaricidal mechanism of scopoletin was mediated by the weakly expressed SoxNeuroA gene. Additionally, yeast one-hybrid (Y1H) and dual-luciferase reporter assays revealed that TcSoxNeuroA was a repressor of Orai1 Ca2+ channel gene transcription, and the key binding sequence was ATCAAAG (positions -361 to -368 of the Orai1 promoter). Importantly, site-directed mutagenesis and microscale thermophoresis assays further indicated that ASP185, ARG189, and LYS217, which were key predicted hydrogen-bonding sites in the molecular docking model, may be the vital binding sites for scopoletin in TcSoxNeuroA. CONCLUSION: These results demonstrate that the acaricidal mechanism of scopoletin involves inhibition of the transcription factor SoxNeuroA, thus inducing the activation of the Orai1 Ca2+ channel, eventually leading to Ca2+ overload and lethality. Elucidation of the transcription factor-targeted mechanism for this potent plant-derived acaricide has vital implications for the design of next-generation green acaricides with novel targets. © 2023 Society of Chemical Industry.


Subject(s)
Acaricides , Tetranychidae , Animals , Acaricides/pharmacology , Scopoletin/chemistry , Scopoletin/pharmacology , Molecular Docking Simulation , Transcription Factors
2.
Plant Physiol Biochem ; 201: 107795, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301186

ABSTRACT

Although mainly known for producing artemisinin, Artemisia annua is enriched in phenylpropanoid glucosides (PGs) with significant bioactivities. However, the biosynthesis of A. annua PGs is insufficiently investigated. Different A. annua ecotypes from distinct growing environments accumulate varying amounts of metabolites, including artemisinin and PGs such as scopolin. UDP-glucose:phenylpropanoid glucosyltransferases (UGTs) transfers glucose from UDP-glucose in PG biosynthesis. Here, we found that the low-artemisinin ecotype GS produces a higher amount of scopolin, compared to the high-artemisinin ecotype HN. By combining transcriptome and proteome analyses, we selected 28 candidate AaUGTs from 177 annotated AaUGTs. Using AlphaFold structural prediction and molecular docking, we determined the binding affinities of 16 AaUGTs. Seven of the AaUGTs enzymatically glycosylated phenylpropanoids. AaUGT25 converted scopoletin to scopolin and esculetin to esculin. The lack of accumulation of esculin in the leaf and the high catalytic efficiency of AaUGT25 on esculetin suggest that esculetin is methylated to scopoletin, the precursor of scopolin. We also discovered that AaOMT1, a previously uncharacterized O-methyltransferase, converts esculetin to scopoletin, suggesting an alternative route for producing scopoletin, which contributes to the high-level accumulation of scopolin in A. annua leaves. AaUGT1 and AaUGT25 responded to induction of stress-related phytohormones, implying the involvement of PGs in stress responses.


Subject(s)
Artemisia annua , Artemisinins , Artemisia annua/metabolism , Scopoletin/chemistry , Scopoletin/metabolism , Scopoletin/pharmacology , Esculin/metabolism , Multiomics , Molecular Docking Simulation , Artemisinins/metabolism , Glucosides/metabolism , Glucose/metabolism , Uridine Diphosphate/metabolism
3.
Appl Environ Microbiol ; 89(1): e0160122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36598487

ABSTRACT

Coumarins are generally considered to be produced by natural plants. Fungi have been reported to produce coumarins, but their biosynthetic pathways are still unknown. In this study, Fusarium oxysporum GU-7 and GU-60 were isolated from Glycyrrhiza uralensis, and their antioxidant activities were determined to be significantly different. Abundant dipeptide, phenolic acids, and the plant-derived coumarins fraxetin and scopoletin were identified in GU-7 by untargeted metabolomics, and these compounds may account for its stronger antioxidant activity compared to GU-60. Combined with metabolome and RNA sequencing analysis, we identified 24 potentially key genes involved in coumarin biosynthesis and 6 intermediate metabolites. Interestingly, the best hit of S8H, a key gene involved in hydroxylation at the C-8 position of scopoletin to yield fraxetin, belongs to a plant species. Additionally, nondestructive infection of G. uralensis seeds with GU-7 significantly improved the antioxidant activity of seedlings compared to the control group. This antioxidant activity may depend on the biological characteristics of endophytes themselves, as we observed a positive correlation between the antioxidant activity of endophytic fungi and that of their nondestructively infected seedlings. IMPORTANCE Plant-produced coumarins have been shown to play an important role in assembly of the plant microbiomes and iron acquisition. Coumarins can also be produced by some microorganisms. However, studies on coumarin biosynthesis in microorganisms are still lacking. We report for the first time that fraxetin and scopoletin were simultaneously produced by F. oxysporum GU-7 with strong free radical scavenging abilities. Subsequently, we identified intermediate metabolites and key genes in the biosynthesis of these two coumarins. This is the first report on the coumarin biosynthesis pathway in nonplant species, providing new strategies and perspectives for coumarin production and expanding research on new ways for plants to obtain iron.


Subject(s)
Antioxidants , Arabidopsis , Antioxidants/metabolism , Scopoletin/chemistry , Scopoletin/metabolism , Arabidopsis/genetics , Biosynthetic Pathways/genetics , Coumarins/chemistry , Coumarins/metabolism , Plants/metabolism , Iron/metabolism
4.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677589

ABSTRACT

(1) Background: Scopoletin and scoparone, two naturally occurring coumarins, have garnered considerable attention and have been introduced to the market in China due to their high insecticidal efficacy and low toxicity. To investigate the structure-activity relationship of these coumarins, a series of scopoletin derivatives with aryl sulfate at C7 and different substitutes at C3 were designed and synthesized, and their insecticidal activity was studied. (2) Methods: A total of 28 new scopoletin derivatives were designed and synthesized. Most target compounds exhibited moderate insecticidal activity against the phytophagous mite Tetranychus cinnabarinus and the brine shrimp Artemia salina. (3) Results: Among these compounds, compounds 5a and 5j possessed the best insecticidal activities against T. cinnabarinus, with LC50 values of 57.0 and 20.0 µg/mL, respectively, whereas that of the control drug was 15.0 µg/mL. Compound 4j exhibited selective insecticidal activities against A. salina, with an LC50 value of 9.36 µg/mL, whereas its LC50 value against T. cinnabarinus was 93.0 µg/mL. The enzymatic inhibitory activity on acetylcholinesterase (AChE) showed a consistent tendency with the insecticidal activity. Further molecular docking analyses predicted the binding conformations of these compounds, which showed a good correlation between the insecticidal activity and the binding scores. (4) Conclusions: In general, a decreased electron cloud density of the Δ3,4 olefinic bond is beneficial for improving the insecticidal activity against both T. cinnabarinus and A. salina. In addition, naphthyl or benzene groups with a sulfate ester at the C7 position could further improve the insecticidal activity against A. salina. AChE was implied to be a site of action for potential insecticidal activity. The results provide insight into the rational design of a new generation of effective coumarin insecticides.


Subject(s)
Acaricides , Insecticides , Animals , Insecticides/chemistry , Acaricides/chemistry , Scopoletin/chemistry , Molecular Docking Simulation , Acetylcholinesterase , Structure-Activity Relationship , Molecular Structure
5.
Eur J Med Chem ; 224: 113701, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34315044

ABSTRACT

In this study, eleven new 3- and 7-positions modified scopoletin derivatives (18a-k) were designed, synthesized, and biologically evaluated against human breast cancer cell lines. Most compounds showed improved antiproliferative activity against MCF-7 and MDA-MB-231 cells and weaker cytotoxicity on human breast epithelial cell line MCF-10A than lead compound 5. Among them, compound 18e exhibited the most potent antiproliferative activity against MCF-7 cells (IC50 = 0.37 ± 0.05 µM). Particularly, 18e produced the highest levels of nitric oxide (NO) intracellularly, and its antiproliferation effect was attenuated by hemoglobin (an NO scavenger). Further pharmacological research showed that 18e blocked the cell cycle at the G2/M phase, downregulated the phosphorylation of PI3K and Akt in MCF-7 cells and regulated the expressions of the apoptosis proteins to induce apoptosis. Moreover, 18e inhibited the growth of MCF-7 in vivo. Overall, 18e is a novel anticancer agent with the abilities of high concentration of NO releasing and the inhibition of PI3K/Akt signaling pathway, and may be a promising agent against MCF-7 human breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Design , Nitric Oxide Donors/pharmacology , Scopoletin/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Donors/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Scopoletin/chemical synthesis , Scopoletin/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
6.
Int J Biol Macromol ; 182: 1278-1291, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33991558

ABSTRACT

The aggregation of α-synuclein is linked to neurological disorders, and of these, Parkinson's disease (PD) is among the most widely studied. In this background, we have investigated here the effects of three α, ß-unsaturated carbonyl based plant metabolites, daidzein, fisetin and scopoletin on α-Syn aggregation. The ThT and light scattering kinetics studies establish that these compounds have ability to inhibit α-Syn fibrillation to different extents; this is confirmed by TEM studies. It is pertinent to note here that daidzein and scopoletin have been predicted to be able to cross the blood brain barrier. ANS binding assays demonstrate that the compounds interfere in the hydrophobic interactions. The tyrosine quenching, molecular docking and MD simulation studies showed that the compounds bind with α-Syn and provide structural rigidity which delays onset of structural transitions, which is confirmed by CD spectroscopy. The results obtained here throw light on the mechanisms underlying inhibition of α-Syn fibrillation by these compounds. Thus, the current work has significant therapeutic implications for identifying plant based potent therapeutic molecules for PD and other synucleinopathies, an area which needs extensive exploration.


Subject(s)
Flavonols/pharmacology , Isoflavones/pharmacology , Metabolome , Protein Aggregates/drug effects , Scopoletin/pharmacology , alpha-Synuclein/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Cell Line , Flavonols/chemistry , Fluorescence , Humans , Hydrophobic and Hydrophilic Interactions , Isoflavones/chemistry , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Scopoletin/chemistry , Tyrosine/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure
7.
Anticancer Agents Med Chem ; 21(14): 1774-1782, 2021.
Article in English | MEDLINE | ID: mdl-33292145

ABSTRACT

BACKGROUND: Natural products and their molecular frameworks have been explored as invaluable sources of inspiration for drug design by means of structural modification, computer-aided drug design, and so on. Scopoletin extracting from multiple herbs exhibits potential anti-cancer activity in vitro and in vivo without toxicity towards normal cells. OBJECTIVE: The study aims to obtain new scopoletin derivatives with enhanced anti-cancer activity. We performed chemical structure modification and researched the mechanism of anti-tumor activity. METHODS: In this study, we considered scopoletin as a lead compound, designed and synthesized a series of scopoletin derivatives via introducing different heterocyclic fragments, and their chemical structures were characterized by NMR spectra (1H NMR and 13C NMR) and HRMS(ESI). The antiproliferative activity of target compounds in four cancer cell lines (MDA-MB-231, MCF-7, HepG2, and A549) was determined by the MTT assay. Compound 11b was treated with Ac-cys under different reaction conditions to explore the thiol addition activity of it. The Annexin V/PI and JC-1 staining assay were performed to investigate the anti-tumor mechanism of 11b. RESULTS: Novel compounds 8a-h and 11a-h derivatives of scopoletin were synthesized. Most of the target compounds exhibited enhanced antiproliferative activity against different cancer cells and reduced toxicity towards normal cells. In particular, 11b displayed the optimal antitumor ability against breast cancer MDA-MB- 231 cells with an IC50 value of 4.46 µM. Compound 11b also cannot react with Ac-cys under the experimental condition. When treated with 11b for 24 h, the total apoptotic cells increased from 10.8% to 79.3%. Besides, 11b induced the depolarization of mitochondrial membrane potential. CONCLUSION: Compound 11b was more active than other derivatives, indicating that the introduction of thiophene fragment was beneficial for the enhancement of antitumor effect, and it was also not an irreversible inhibitor based on the result that the α, ß-unsaturated ketones of 11b cannot undergo Michael addition reactions with Accys. Furthermore, studies on the pharmacological mechanism showed that 11b induced mitochondrial depolarization and apoptosis, which indicated that 11b killed cancer cells via a mitochondrial apoptotic pathway. Therefore, in-depth research and structure optimization of this compound is warranted.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Scopoletin/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Scopoletin/chemical synthesis , Scopoletin/chemistry , Tumor Cells, Cultured
8.
Drug Dev Ind Pharm ; 46(9): 1550-1557, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32811191

ABSTRACT

Scopoletin (Sco) has great potential for hyperuricemia therapy. However, the relatively low oral bioavailability of Sco limits its further applications. Soluplus-based Sco micelles (Sco-Ms) were successfully prepared in our previous work. The oral bioavailability of Sco-Ms was increased by 438% compared with free Sco. In this study, we aimed to compare the biodistribution and antihyperuricemic efficacy of Sco and Sco-Ms, and explore their therapeutic mechanisms as well. We studied the tissue biodistribution of Sco and Sco-Ms after they were orally administered to mice. The antihyperuricemic effect and the therapeutic mechanisms of Sco and Sco-Ms were evaluated using yeast extract/potassium oxonate-induced hyperuricemia model in mice. The Sco concentration in each tissue was significantly higher than that of Sco suspension after orally administrating Sco-Ms to mice. Oral delivery of Sco-Ms exhibited significantly stronger hypouricemic efficacy in hyperuricemic mice than Sco. Meanwhile, Sco-Ms showed a better protective effect on mice kidney injury. The hypouricemic efficacy of Sco was due to promoting the excretion of uric acid via modulating the alteration of gene expression levels of renal uric acid transporter (URAT1), glucose transporter (GLUT9), and organic anion transporter 1 (OAT1). Sco-Ms could not only restore the dysregulation of URAT1, GLUT9, and OAT1 more effectively, but also down-regulate the activity of hepatic xanthine oxidase (XOD) to inhibit the production of uric acid. In conclusion, taken together, Sco-Ms represents a potential oral strategy for the treatment of hyperuricemia.


Subject(s)
Hyperuricemia , Oxonic Acid/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Scopoletin/chemistry , Animals , Gout Suppressants/metabolism , Gout Suppressants/therapeutic use , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Kidney/metabolism , Mice , Micelles , Scopoletin/metabolism , Scopoletin/therapeutic use , Tissue Distribution
9.
Biosens Bioelectron ; 145: 111705, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31550630

ABSTRACT

The detection of organophosphorus pesticides (OPs) has received considerable attention for their great harm to human beings. Herein, a novel ratiometric fluorescence biosensor was constructed for the determination of OPs by using Scopoletin (SC) and Amplex Red (AR) as probe pairs that have opposite responses to MnO2 nanosheets (MnO2 NS). MnO2 NS possess peroxidase-like catalytic activity, which could quench the fluorescence of SC as well as enhance the fluorescence of the non-fluorescent substance AR by oxidation. In the absence of OPs, acetylcholinesterase (AChE) hydrolyzed acetylcholine chloride (ATCh) into choline (TCh) and acetate. TCh led the decomposition of MnO2 NS to manganese ions (Mn2+), increasing signal of SC and decreasing signal of AR. In the presence of OPs, the activity of AChE was inhibited and the decomposition of MnO2 NS was hindered, therefore the fluorescence intensity of SC was weak and the fluorescence intensity of AR had an obvious increase. Moreover, under the optimal conditions, the ratio of fluorescence intensity response recorded on the AR/SC increases with increasing the concentration of DDVP. The method has wider linear range of 5.0 pg/mL ∼500 ng/mL with a detection limit of 1.6 pg/mL, which is superior to previously reported methods. This strategy has also been applied to a visual observation based on the color change of the solution under UV light.


Subject(s)
Acetylcholinesterase/chemistry , Biosensing Techniques , Organophosphorus Compounds/isolation & purification , Pesticides/isolation & purification , Acetylcholine/chemistry , Catalysis , Fluorescent Dyes/chemistry , Humans , Manganese Compounds/chemistry , Organophosphorus Compounds/chemistry , Oxazines/chemistry , Pesticides/chemistry , Quantum Dots/chemistry , Scopoletin/chemistry
10.
Nat Prod Res ; 33(2): 196-203, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29502449

ABSTRACT

Two new tetranorterpenoid derivatives named rubescins I (1) and J (2), were isolated along with six known compounds including rubescin D (3), lichexanthone (4), scopoletin (5), scopoletin O-glycoside (6), ß-sitosterol (7) and stigmasterol (8) from the stem bark of Trichilia rubescens (Meliaceae). The structures of the compounds were determined by means of MS, different NMR and by comparison with related data reported in the literature.


Subject(s)
Limonins/chemistry , Meliaceae/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Bark/chemistry , Plant Extracts/chemistry , Scopoletin/chemistry , Scopoletin/isolation & purification , Stigmasterol/chemistry , Stigmasterol/isolation & purification
11.
Biomed Chromatogr ; 33(3): e4436, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30421792

ABSTRACT

A highly sensitive and selective method based on ultra-high-performance liquid chromatography combined with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS) has been developed and validated for the determination of scopoletin in dog plasma. The analyte was extracted from plasma samples using acetonitrile and separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 µm) with 0.05% ammonium hydroxide and acetonitrile as mobile phase. The developed method was linear over the concentration range of 1-500 ng/mL, with a correlation coefficient >0.9988. The intra- and inter-day precisions (RSD) were <8.93% while the accuracy (RE) ranged from -6.50 to 8.12%. Extraction recovery, matrix effect and stability for dog plasma samples were within the required limits. The validated method has been successfully applied to investigate the pharmacokinetics and metabolism of scopoletin in dog plasma after intravenous (1 mg/kg) and oral (10, 25, 50 mg/kg) administration. The results revealed that (a) scopoletin showed short elimination half-life in dog; (b) its oral bioavailability was low (within the range of 5.69-7.08%); (c) scopoletin showed dose-independent pharmacokinetic profiles in dog plasma over the dose range of 10-50 mg/kg; and (d) glucuronidation was the predominant metabolic pathway in dog.


Subject(s)
Chromatography, High Pressure Liquid/methods , Scopoletin/blood , Scopoletin/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Biological Availability , Dogs , Limit of Detection , Linear Models , Male , Reproducibility of Results , Scopoletin/chemistry , Scopoletin/metabolism
12.
Molecules ; 23(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274332

ABSTRACT

Allelochemicals are the media of allelopathy and form the chemical bases of plant-environment interactions. To determine true allelochemicals and their autotoxic effects, seven compounds were isolated and identified from in-situ sampled rhizosphere soil of cultivated Saussurea lappa. Of these; costunolide (2), dehydrocostus lactone (3) and scopoletin (4) showed significant inhibition on seedling growth in a concentration-dependent manner. Detection and observation demonstrated that the antioxidase system was found to be affected by these chemicals, resulting in the accumulation of ROS and membrane damage. To investigate their release ways, the compounds were traced back and volumes quantified in rhizosphere soil and plant tissues. This work made clear the chemical bases and their physiological effects on the plants. These chemicals were found to be the secondary metabolites of the plants and included in the rhizosphere soil. The findings identified a potential pathway of plant-plant interactions, which provided theoretical basis to overcoming replanting problems. This research was also useful for exploring ecological effects of allelochemicals in green agriculture.


Subject(s)
Antioxidants/metabolism , Lactones/metabolism , Rhizosphere , Saussurea/metabolism , Scopoletin/metabolism , Sesquiterpenes/metabolism , Antioxidants/chemistry , Lactones/chemistry , Saussurea/chemistry , Scopoletin/chemistry , Sesquiterpenes/chemistry
13.
Chin J Nat Med ; 16(10): 766-773, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30322610

ABSTRACT

Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D3, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 µmol·L-1in vivo and 100 µmol·L-1in vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.


Subject(s)
Alkaloids/pharmacology , Benzodioxoles/pharmacology , Benzyl Compounds/pharmacology , Cholecalciferol/pharmacology , Flavonoids/pharmacology , Kaempferols/pharmacology , Melanins/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Purines/pharmacology , Scopoletin/pharmacology , Vitiligo/metabolism , Alkaloids/chemistry , Animals , Benzodioxoles/chemistry , Benzyl Compounds/chemistry , Cholecalciferol/chemistry , Flavonoids/chemistry , Humans , Kaempferols/chemistry , Melanins/genetics , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Pigmentation/drug effects , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , Purines/chemistry , Scopoletin/chemistry , Vitiligo/drug therapy , Vitiligo/enzymology , Zebrafish
14.
Molecules ; 23(5)2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29695088

ABSTRACT

Thirty phenolic ether derivatives of scopoletin modified at the 7-hydroxy position were synthesized, and their structures were confirmed by IR, ¹H-NMR, 13C-NMR, MS and elemental analysis. Preliminary acaricidal activities of these compounds against female adults of Tetranychus cinnabarinus (Boisduval) were evaluated using the slide-dip method. The results indicated that some of these compounds exhibit more pronounced acaricidal activity than scopoletin, especially compounds 32, 20, 28, 27 and 8 which exhibited about 8.41-, 7.32-, 7.23-, 6.76-, and 6.65-fold higher acaricidal potency. Compound 32 possessed the the most promising acaricidal activity and exhibited about 1.45-fold higher acaricidal potency against T. cinnabarinus than propargite. Statistically significant 2D-QSAR model supports the observed acaricidal activities and reveals that polarizability (HATS5p) was the most important parameter controlling bioactivity. 3D-QSAR (CoMFA: q² = 0.802, r² = 0.993; CoMSIA: q² = 0.735, r² = 0.965) results show that bulky substituents at R4, R1, R2 and R5 (C6, C3, C4, and C7) positions, electron positive groups at R5 (C7) position, hydrophobic groups at R1 (C3) and R2 (C4), H-bond donors groups at R1 (C3) and R4 (C6) will increase their acaricidal activity, which provide a good insight into the molecular features relevant to the acaricidal activity for further designing novel acaricidal agents. Molecular docking demonstrates that these selected derivatives display different bide modes with TcPMCA1 from lead compound and they interact with more key amino acid residues than scopoletin. In silico ADME properties of scopoletin and its phenolic ether derivatives were also analyzed and showed potential to develop as good acaricidal candidates.


Subject(s)
Acaricides/chemistry , Acaricides/pharmacology , Ethers , Phenols , Scopoletin/chemistry , Scopoletin/pharmacology , Acaricides/chemical synthesis , Animals , Chemistry Techniques, Synthetic , Ethers/chemistry , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenols/chemistry , Quantitative Structure-Activity Relationship , Scopoletin/analogs & derivatives , Scopoletin/chemical synthesis , Tetranychidae/drug effects
15.
Biosens Bioelectron ; 105: 29-35, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29351867

ABSTRACT

Molecularly imprinted polymer (MIP) nanofilms for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of ~5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered.


Subject(s)
Biosensing Techniques/methods , Molecular Imprinting/methods , Polymerization , Polymers/chemistry , Scopoletin/chemistry , Transferrin/analysis , Adsorption , Animals , Cattle , Gold/chemistry , Humans , Models, Molecular , Oxidation-Reduction , Polymers/chemical synthesis , Scopoletin/chemical synthesis
16.
Planta Med ; 84(5): 320-328, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28950382

ABSTRACT

Scoparone is a natural bioactive compound in Chinese herbal medicines. It has numerous pharmacological actions, including liver protective, hypolipidemic, antitumor, and anti-inflammatory effects. The primary metabolism route of scoparone is O-demethylation to scopoletin or isoscopoletin catalyzed by CYP enzymes. The aims of our study were to identify the human CYP enzymes catalyzing scoparone 7-O-demethylation to scopoletin and to compare this oxidation reaction in liver microsomes among different species. A high throughput fluorescent-based assay method was developed to determine the scoparone 7-O-demethylation to scopoletin rate. The rate was 100 - 400 nmol/(min×g protein) in mouse and rabbit liver microsomes, 10 - 20 nmol/(min×g protein) in pig microsomes, 1 - 3 nmol/(min×g protein) in human and less than 1 nmol/(min×g protein) in rat liver microsomes. Human CYP1A1 (Km 13 µM and Vmax 0.8 min-1), CYP1A2 (Km 48 µM and Vmax 0.3 min-1), and CYP2A13 (Km 10 µM and Vmax 22 min-1) were the most efficient catalysts of the reaction. The CYP2A6 selective inhibitor pilocarpine and an antibody against mouse CYP2A5 inhibited scoparone 7-O-demethylation to scopoletin in rabbit, mouse, and pig liver microsomes, indicating involvement of CYP2A enzymes in the reaction. Hepatic scoparone 7-O-demethylation to scopoletin differed between species both with respect to the rate of reaction and catalyzing enzymes. These species differences need to be taken into account when testing scoparone pharmacokinetics in animals and humans.


Subject(s)
Coumarins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Scopoletin/analogs & derivatives , Scopoletin/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Coumarins/chemistry , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Demethylation , Female , Humans , Male , Mice , Microsomes, Liver/enzymology , Molecular Structure , Oxidation-Reduction , Rabbits , Rats , Scopoletin/chemistry , Swine
17.
Phytother Res ; 31(12): 1954-1961, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29067744

ABSTRACT

The effect of scopoletin-standardized Morinda elliptica leaf extract against osteoarthritis was investigated in ex vivo explant culture and preclinical rodent model. Thirty male rats were grouped (n = 6) into untreated osteoarthritis (OA), OA + Diclofenac (5 mg/kg), and OA + extract (200 and 400 mg/kg) and compared with healthy control. Monosodium iodoacetate were injected into the right intra-articular knee joints to induce OA. The rats were evaluated for OA severity via physical (micro-CT and histological observations), biochemical, ELISA, and mRNA expression analysis (for inflammation and cartilage degradation biomarkers), after 28 days of treatment. The extract suppressed glycosaminoglycan release from the cartilage explant in the presence of Interleukin-1ß. The 200 mg/kg dose appeared better than 400 mg/kg dose, at reducing cartilage and subchondral bone erosions in OA-induced rats, by significantly down-regulating the collagenases and aggrecanase. The extract dose-dependently reduced serum inflammation biomarkers and increased bone formation biomarkers to near normal levels in the OA-induced rats. M. elliptica leaf scopoletin-standardised extract alleviated OA progression and articular cartilage structure, by ameliorating cartilage degradation, nitric oxide levels, inflammation, bone /cartilage homeostasis, collagenase/aggrecanase activities, chondrocytes survival, subchondral bone structure and integrity.


Subject(s)
Cartilage, Articular/drug effects , Inflammation/metabolism , Morinda/chemistry , Osteoarthritis/drug therapy , Scopoletin/chemistry , Animals , Disease Models, Animal , Female , Humans , Male , Middle Aged , Osteoarthritis/pathology , Rats
18.
PLoS One ; 12(9): e0183047, 2017.
Article in English | MEDLINE | ID: mdl-28880869

ABSTRACT

BACKGROUND: Daodi-herb is a part of Chinese culture, which has been naturally selected by traditional Chinese medicine clinical practice for many years. Sweet wormwood herb is a kind of Daodi-herb, and comes from Artemisia annua L. Artemisinin is a kind of effective antimalarial drug being extracted from A. annua. Because of artemisinin, Sweet wormwood herb earns a reputation. Based on the Pharmacopoeia of the People's Republic of China (PPRC), Sweet wormwood herb can be used to resolve summerheat-heat, and prevent malaria. Besides, it also has other medical efficacies. A. annua, a medicinal plant that is widely distributed in the world contains many kinds of chemical composition. Research has shown that compatibility of artemisinin, scopoletin, arteannuin B and arteannuic acid has antimalarial effect. Compatibility of scopoletin, arteannuin B and arteannuic acid is conducive to resolving summerheat-heat. Chemical constituents in A. annua vary significantly according to geographical locations. So, distribution of A. annua may play a key role in the characteristics of efficacy and chemical constituents of Sweet wormwood herb. It is of great significance to study this relationship. OBJECTIVES: We mainly analyzed the relationship between the chemical constituents (arteannuin B, artemisinin, artemisinic acid, and scopoletin) with special efficacy in A. annua that come from different provinces in china, and analyzed the relationship between chemical constituents and spatial distribution, in order to find out the relationship between efficacy, chemical constituents and distribution. METHODS: A field survey was carried out to collect A. annua plant samples. A global positioning system (GPS) was used for obtaining geographical coordinates of sampling sites. Chemical constituents in A. annua were determined by liquid chromatography tandem an atmospheric pressure ionization-electrospray mass spectrometry. Relationship between chemical constituents including proportions, correlation analysis (CoA), principal component analysis (PCA) and cluster analysis (ClA) was displayed through Excel and R software version2.3.2(R), while the one between efficacy, chemical constituents and spatial distribution was presented through ArcGIS10.0, Excel and R software. RESULTS: According to the results of CoA, arteannuin B content presented a strong positive correlation with artemisinic acid content (p = 0), and a strong negative correlation with artemisinin content (p = 0). Scopoletin content presented a strong positive correlation with artemisinin content (p = 0), and a strong negative correlation with artemisinic acid content (p = 0). According to the results of PCA, the first two principal components accounted for 81.57% of the total accumulation contribution rate. The contribution of the first principal component is about 45.12%, manly including arteannuin B and artemisinic acid. The contribution of the second principal component is 36.45% of the total, manly including artemisinin and scopoletin. According to the ClA by using the principal component scores, 19 provinces could be divided into two groups. In terms of provinces in group one, the proportions of artemisinin are all higher than 80%. Based on the results of PCA, ClA, percentages and scatter plot analysis, chemical types are defined as "QHYS type", "INT type" and "QHS type." CONCLUSION: As a conclusion, this paper shows the relationship between efficacy, chemical constituents and distribution. Sweet wormwood herb with high arteannuin B and artemisinic acid content, mainly distributes in northern China. Sweet wormwood herb with high artemisinin and scopoletin content has the medical function of preventing malaria, which mainly distributes in southern China. In this paper, it is proved that Sweet wormwood Daodi herb growing in particular geographic regions, has more significant therapeutical effect and higher chemical constituents compared with other same kind of CMM. And also, it has proved the old saying in China that Sweet wormwood Daodi herb which has been used to resolve summerheat-heat and prevent malaria, which distributed in central China. But in modern time, Daodi Sweet wormwood herb mainly has been used to extract artemisinin and prevent malaria, so the Daod-region has transferred to the southern China.


Subject(s)
Antimalarials/chemistry , Artemisia annua/chemistry , Plant Extracts/chemistry , Artemisinins/chemistry , China , Cluster Analysis , Principal Component Analysis , Scopoletin/chemistry , Software
19.
Int J Mol Sci ; 18(7)2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28653986

ABSTRACT

The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is an economically important agricultural pest that is difficult to prevent and control. Scopoletin is a botanical coumarin derivative that targets Ca2+-ATPase to exert a strong acaricidal effect on carmine spider mites. In this study, the full-length cDNA sequence of a plasma membrane Ca2+-ATPase 1 gene (TcPMCA1) was cloned. The sequence contains an open reading frame of 3750 bp and encodes a putative protein of 1249 amino acids. The effects of scopoletin on TcPMCA1 expression were investigated. TcPMCA1 was significantly upregulated after it was exposed to 10%, 30%, and 50% of the lethal concentration of scopoletin. Homology modeling, molecular docking, and three-dimensional quantitative structure-activity relationships were then studied to explore the relationship between scopoletin structure and TcPMCA1-inhibiting activity of scopoletin and other 30 coumarin derivatives. Results showed that scopoletin inserts into the binding cavity and interacts with amino acid residues at the binding site of the TcPMCA1 protein through the driving forces of hydrogen bonds. Furthermore, CoMFA (comparative molecular field analysis)- and CoMSIA (comparative molecular similarity index analysis)-derived models showed that the steric and H-bond fields of these compounds exert important influences on the activities of the coumarin compounds.Notably, the C3, C6, and C7 positions in the skeletal structure of the coumarins are the most suitable active sites. This work provides insights into the mechanism underlying the interaction of scopoletin with TcPMCA1. The present results can improve the understanding on plasma membrane Ca2+-ATPase-mediated (PMCA-mediated) detoxification of scopoletin and coumarin derivatives in T. cinnabarinus, as well as provide valuable information for the design of novel PMCA-inhibiting acaricides.


Subject(s)
Acaricides/toxicity , Plasma Membrane Calcium-Transporting ATPases/metabolism , Scopoletin/toxicity , Tetranychidae/enzymology , Up-Regulation/drug effects , Acaricides/chemistry , Animals , Cloning, Molecular , Gene Expression Regulation/drug effects , Molecular Docking Simulation , Phylogeny , Plasma Membrane Calcium-Transporting ATPases/chemistry , Plasma Membrane Calcium-Transporting ATPases/genetics , Quantitative Structure-Activity Relationship , Scopoletin/chemistry , Tetranychidae/drug effects , Tetranychidae/genetics
20.
Phytochemistry ; 138: 170-177, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28284566

ABSTRACT

Two pairs of rare benzofuran glucoside epimers, indicuses A and B and indicuses C and D, three biogenetically related compounds indicuses E-G, and one coumarin indicus H, as well as 11 known compounds, were isolated from the bark of Streblus indicus (Bur.) Corner. The structures of indicuses A-H were elucidated by NMR and MS data, as well as by CD. (S)-Marmesinin exhibited moderate antimicrobial activity in vitro against Bacillus subtilis and Saccharomyces cerevisiae. 7,8-Dihydroxy-3-(3-methyl-2-butenyl) coumarin, umbelliferone, and scopoletin displayed strong cytotoxic activity in vitro against human bladder carcinoma cell line EJ. The structure-activity relationships indicate that hydroxylation at C-7 in the cytotoxic compounds is crucial to their activities.


Subject(s)
Benzofurans/chemistry , Coumarins/chemistry , Glycosides/chemistry , Moraceae/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Bacillus subtilis/drug effects , Benzofurans/isolation & purification , Cell Line, Tumor , Coumarins/isolation & purification , Furans/chemistry , Furans/isolation & purification , Glycosides/isolation & purification , Humans , Microbial Sensitivity Tests , Molecular Structure , Plant Bark/chemistry , Plant Extracts/chemistry , Saccharomyces cerevisiae/drug effects , Scopoletin/chemistry , Scopoletin/isolation & purification , Structure-Activity Relationship , Umbelliferones/chemistry , Umbelliferones/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...